Omniscient foliations and the geometry of cosmological spacetimes
نویسندگان
چکیده
We identify certain general geometric conditions on a foliation of spacetime (M,g) by timelike curves that will impede the existence null geodesic lines, especially if possesses compact Cauchy hypersurface. The absence such in turn, yields well-known restrictions geometry cosmological spacetimes, context Bartnik's splitting conjecture. Since (non)existence lines is actually conformally invariant property, only need to apply for some suitable conformal rescaling g.
منابع مشابه
Constant mean curvature foliations in cosmological spacetimes
Foliations by constant mean curvature hypersurfaces provide a possibility of defining a preferred time coordinate in general relativity. In the following various conjectures are made about the existence of foliations of this kind in spacetimes satisfying the strong energy condition and possessing compact Cauchy hypersurfaces. Recent progress on proving these conjectures under supplementary assu...
متن کاملLocal Prescribed Mean Curvature foliations in cosmological spacetimes
A theorem about local in time existence of spacelike foliations with prescribed mean curvature in cosmological spacetimes will be proved. The time function of the foliation is geometrically defined and fixes the diffeomorphism invariance inherent in general foliations of spacetimes. Moreover, in contrast to the situation of the more special constant mean curvature foliations, which play an impo...
متن کاملGlobal Prescribed Mean Curvature foliations in cosmological spacetimes with matter Part II
This second part is devoted to the investigation of global properties of Prescribed Mean Curvature (PMC) foliations in cosmological spacetimes with local U(1)× U(1) symmetry and matter described by the Vlasov equation. It turns out, that these spacetimes admit a global foliation by PMC surfaces, as well, but the techniques to achieve this goal are more complex than in the cases considered in pa...
متن کاملGlobal Prescribed Mean Curvature foliations in cosmological spacetimes with matter Part I
This work investigates some global questions about cosmological spacetimes with two dimensional spherical, plane and hyperbolic symmetry containing matter. The result is, that these spacetimes admit a global foliation by prescribed mean curvature surfaces, which extends at least towards a crushing singularity. The time function of the foliation is geometrically defined and unique up to the choi...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: General Relativity and Gravitation
سال: 2022
ISSN: ['0001-7701', '1572-9532']
DOI: https://doi.org/10.1007/s10714-022-03033-z